Regioselectivity Control in Diels-Alder Reactions of Surfactant 1,3-Dienes with Surfactant Dienophiles

David A. Jaeger,* Dan Su, and Abdullah Zafar
Contribution from the Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Barbora Piknova and Stephen B. Hall

Departments of Biochemistry and Medicine, Oregon Health Sciences University, Portland, Oregon 97201
Received November 18, 1999

Abstract

The ability of surfactant aggregate $-\mathrm{H}_{2} \mathrm{O}$ interfaces to control the regioselectivity of Diels-Alder reactions has been investigated. Cycloadditions of surfactant 1,3-dienes 2-[[3-(dimethyldodecylsilyl)-1,3-butadien-2-yl]thio]- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethyl-1-ethanaminium iodide (1a) and 6-[[3-(dimethyloctylsilyl)-1,3-butadien2 -yl]thio]- N, N, N-trimethyl-1-hexanaminium iodide (1b) with surfactant dienophiles (E)-2-[[[2-(dodecoxycarbonyl)-ethenyl]carbonyl]oxy]- N, N, N-trimethyl-1-ethanaminium iodide (2a) and (E)-6-[[[2-(octoxycarbonyl)ethenyl]car-bonyl]oxy]- N, N, N-trimethyl-1-hexanaminium bromide (2b) within their aqueous mixed micelles have been performed at $25(35){ }^{\circ} \mathrm{C}$. The cycloaddition of 1a and 2a gave a $30: 1$ ratio of trans-1-[(2-trimethylammonio)-ethylthio]-2-(dimethyldodecylsilyl)-4-(dodecoxycarbonyl)-5-[(2-trimethylammonio)ethoxycarbonyl]-1cyclohexene dihalide (15a) and trans-1-[(2-trimethylammonio)ethylthio]-2-(dimethyldodecylsilyl)-4-[(2-trimethylammonio)ethoxycarbonyl]-5-(dodecoxycarbonyl)-1-cyclohexene dihalide (16a), respectively, and that of $\mathbf{1 b}$ and $\mathbf{2 b}$ a 6.6:1 ratio of trans-1-[(6-trimethylammonio)hexylthio]-2-(dimethyloctylsilyl)-4-(octoxycarbonyl)-5-[6-(trimethylammonio)hexoxycarbonyl]-1-cyclohexene dihalide (15b) and trans-1-[(6-trimethylammonio)-hexylthio]-2-(dimethyloctylsilyl)-4-[6-(trimethylammonio)hexoxycarbonyl]-5-(octoxycarbonyl)-1-cyclohexene dihalide ($\mathbf{1 6 b}$), respectively. The excess of $\mathbf{1 5}$ over $\mathbf{1 6}$ is consistent with the reaction of $\mathbf{1}$ and $\mathbf{2}$ within mixed aggregates in their preferred orientations at the aggregate $-\mathrm{H}_{2} \mathrm{O}$ interface. The greater regioselectivity obtained in the reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ is ascribed to the shorter tether between their reactive functional groups and quaternary ammonium headgroups. A monolayer study of 15a and 16a was also performed.

Introduction

The Diels-Alder reaction is one of the most important reactions in organic synthesis. ${ }^{1}$ Numerous studies of DielsAlder cycloadditions performed in $\mathrm{H}_{2} \mathrm{O}$ and aqueous surfactantbased media have demonstrated that increased rates and stereoselectivities can be expected relative to reactions performed in conventional organic solvents. ${ }^{2,3}$ In particular, J. B. F. N. Engberts and co-workers have recently reported a millionfold rate acceleration of a Diels-Alder reaction resulting from combined Lewis acid and micellar catalysis in $\mathrm{H}_{2} \mathrm{O}, 3 \mathrm{a}$ and enhanced enantioselectivity in a chiral Lewis acid-catalyzed Diels-Alder reaction in $\mathrm{H}_{2} \mathrm{O} \cdot{ }^{3 \mathrm{~b}}$ On the other hand, there have

[^0]been only a few studies of the ability of interfacial orientational effects within aqueous surfactant-based media to control the regioselectivity of Diels-Alder reactions. ${ }^{4,5}$ In one involving a surfactant 1,3-diene and a neutral nonsurfactant dienophile, orientational effects were not strong enough to overcome the reaction's intrinsically preferred regiochemistry. ${ }^{4}$ In another study involving a different surfactant 1,3-diene and surfactant dienophiles, modest regioselectivity was obtained. ${ }^{5}$ There have been a few reports of the effect on regiochemistry of performing Diels-Alder reactions in $\mathrm{H}_{2} \mathrm{O}$ alone. ${ }^{6}$

Herein we report the results of a study of regioselectivity control in Diels-Alder reactions of surfactant 1,3-dienes $\mathbf{1}$ with surfactant dienophiles 2. ${ }^{7}$ Within surfactant pairs 1a and 2a, and $\mathbf{1 b}$ and $\mathbf{2 b}$, the substituted 1,3-diene and dienophile groups are separated from the quaternary ammonium headgroups by

[^1]Scheme 1^{a}

${ }^{a}$ Key: (a) MeLi, THF, $-78{ }^{\circ} \mathrm{C}$; (b) 4; (c) 6; (d) MeI, THF, $25^{\circ} \mathrm{C}$.
Scheme $\mathbf{2}^{a}$

${ }^{a}$ Key: (a) $\mathrm{NaClO}_{2}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (b) NaOH ; (c) $\mathrm{Me}_{2} \mathrm{NNH}_{2}$, $50{ }^{\circ} \mathrm{C}$; (d) $\mathrm{NaNO}_{2}, 4 \mathrm{M} \mathrm{HCl}, 0^{\circ} \mathrm{C}$; (e) $48 \% \mathrm{HBr}, \mathrm{H}_{2} \mathrm{NCSNH}_{2}$, reflux.
tethers of two and six methylene units, respectively. The total number of carbon atoms in the tether and terminal alkyl chain of each surfactant is 14 .

Results and Discussion

Syntheses. The synthesis of surfactant 1,3-dienes $\mathbf{1}$ is summarized in Scheme 1. 1,3-Diene $\mathbf{3}^{8}$ was transformed into 1,3-dienes 7 in a one-pot sequence of reactions. The reaction of $\mathbf{3}$ with MeLi was followed by that of the resultant carbanion with commercially available $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{SiMe}_{2} \mathrm{Cl}(4 \mathbf{a}, m=11$; $\mathbf{b}, m=7$) to give 1,3 -dienes $\mathbf{5}$. Then the reaction of $\mathbf{5}$ with MeLi was followed by that of the resultant carbanion with $\left[\mathrm{S}_{\left.\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NMe}_{2}\right]_{2}(\mathbf{6 a}, n=2 ; \mathbf{b}, n=6) \text { to give 7. Quaternization }}\right.$ of $\mathbf{7}$ with MeI gave $\mathbf{1}$.

Disulfides 6 used above were prepared as outlined in Scheme 2. Commercially available $\mathbf{8}$ was converted into $\mathbf{6 a}$. Quaternary hydrazinium chloride 9 , obtained from the reaction of 6-chloro-1-hexanol with N, N-dimethylhydrazine, was converted into amino alcohol $\mathbf{1 0}$. The reaction of $\mathbf{1 0}$ with hydrobromic acid and thiourea gave isothiuronium salt 11, which without isolation was hydrolyzed to yield amino thiol $\mathbf{1 2}$. Then $\mathbf{1 2}$ was converted into $\mathbf{6 b}$.

The synthesis of amino diesters 14 and surfactant dienophile 2a is outlined in Scheme 3; 2b was prepared previously by another pathway. ${ }^{5 \mathrm{a}, \mathrm{b}}$ The reaction of maleic anhydride with HO$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{2}$ or $\mathbf{1 0}$ gave half esters 13, which were then esterified to give 14. Quaternization of $\mathbf{1 4 a}$ with MeI gave 2a.

By surface tensiometry (du Noüy ring) the critical micelle concentrations (cmcs) of 1a, 1b, 2a, and 2b in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ are $0.75 \times 10^{-4}, 1.0 \times 10^{-4}, 0.30 \times 10^{-3}$, and 4.4×10^{-3}

Scheme 3^{a}

${ }^{a}$ Key: (a) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{2}$ or 10, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$, reflux; (b) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{OH}$ ($m=7$ or 11), DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (c) MeI, MeCN, $25^{\circ} \mathrm{C}$.

M, ${ }^{5 a, b}$ respectively. The Krafft temperatures in $\mathrm{H}_{2} \mathrm{O}$ of $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{2 b}$ are $\leq 25^{\circ} \mathrm{C}$, and that of $\mathbf{2 a}$ is ca. $45^{\circ} \mathrm{C}$.

Diels-Alder Reactions. Diels-Alder reactions of 1 with excess 2 in $\mathrm{H}_{2} \mathrm{O}$ at $25(35)^{\circ} \mathrm{C}$, with added 4-tert-butylcatechol, gave cycloadducts $\mathbf{1 5}$ and 16. Several reactions of $\mathbf{1 b}$ and $\mathbf{2 b}$

were performed with added salicylate anion (17, from sodium salicylate). Each crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR and/or analytical reversed-phase HPLC, giving the 15/ $\mathbf{1 6}$ ratio and the yield of $\mathbf{1 5}+\mathbf{1 6}$. Preparative reversed-phase HPLC afforded separated $\mathbf{1 5 b}$ and $\mathbf{1 6 b}$. The results are summarized in runs $1-14$ of Table 1.

Diels-Alder reactions of amines $\mathbf{7}$ and $\mathbf{1 4}$, with added 4-tertbutylcatechol, were performed in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ at $75-85^{\circ} \mathrm{C}$ to give regioisomeric cycloadducts $\mathbf{1 8}$ and 19 . Crude product mixtures

18a, $n=2 ; m=11$
b, $n=6 ; m=7$

19a, $n=2 ; m=11$
b, $n=6 ; m=7$
containing 18b and 19b were analyzed by analytical reversedphase HPLC, and MPLC on silica gel of all crude product mixtures afforded 18 and 19. The results are summarized in runs $15-18$ of Table 1. Separately, 18 and 19 were converted

Table 1. Diels-Alder Reactions

run	1,3-diene		dienophile		medium a	reactn temp, ${ }^{\circ} \mathrm{C}$	reactn time, h	$\begin{aligned} & \text { yield } \\ & (\%)^{b} \end{aligned}$	$\underset{\text { ratio }^{c-f}}{\text { regioisom }}$
	no.	$\begin{gathered} \text { concn, } \\ \mathrm{M} \end{gathered}$	no.	concn, M					
1	1a	0.0078	2a	0.013	$\mathrm{H}_{2} \mathrm{O}$	25	40	79	g
2	1a	0.0081	2a	0.013	$\mathrm{H}_{2} \mathrm{O}$	25	25	83	26:1
3	1a	0.0086	2a	0.014	$\mathrm{H}_{2} \mathrm{O}$	25	48	70	36:1
4	1a	0.019	2 a	0.027	$\mathrm{H}_{2} \mathrm{O}$	35	48	98	28:1
5	1b	0.021	2b	0.082	$\mathrm{H}_{2} \mathrm{O}$	25	21	85	6.7:1
6	1b	0.020	2b	0.074	$\mathrm{H}_{2} \mathrm{O}$	25	52	95	6.6:1
7	1b	0.024	2b	0.098	$\mathrm{H}_{2} \mathrm{O}$	25	45		6.6:1
8	1b	0.030	2b	0.12	$\mathrm{H}_{2} \mathrm{O}$	25	22	85	6.4:1
9	1b	0.031	2b	0.12	$\mathrm{H}_{2} \mathrm{O}$	25	26	86	6.6:1
10	1b	0.038	2b	0.15	$\mathrm{H}_{2} \mathrm{O}$	25	45		6.7:1
11	1b	0.015	2b	0.056	$\mathrm{H}_{2} \mathrm{O}^{h}$	25	46	86	14:1
12	1b	0.030	2b	0.11	$\mathrm{H}_{2} \mathrm{O}^{h}$	25	46	85	14:1
13	1b	0.030	2b	0.11	$\mathrm{H}_{2} \mathrm{O}^{h}$	25	46	82	13:1
14	1b	0.030	2b	0.12	$\mathrm{H}_{2} \mathrm{O}^{h}$	25	25	52	12:1
15	7a	0.066	14a	0.14	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	75	36	74	1:1.6
16	7a	0.066	14a	0.15	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	80	48	84	1:1.3
17	7b	0.076	14b	0.17	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	75	24	71	1:1
18	7b	0.12	14b	0.29	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	85	24	71	1:1

${ }^{a}$ Reaction mixtures contained 4-tert-butylcatechol (10-11 mol \% with respect to 1,3 -diene in runs $1-10$ and $15-18$, and $23 \mathrm{~mol} \%$ in runs $11-14$). ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude mixtures of products and unreacted starting materials: $\mathbf{1 5 a}+\mathbf{1 6 a}$ in runs $1-4$; $\mathbf{1 5 b}+\mathbf{1 6 b}$ in runs $5-14 ; \mathbf{1 8} \mathbf{a}+\mathbf{1 9 a}$ in runs 15 and $16 ; \mathbf{1 8 b}+\mathbf{1 9 b}$ in runs 17 and $18 .{ }^{c}$ In runs $2-4,15 a / 16 a$ ratios determined by HPLC analysis of crude mixtures of products and unreacted starting materials. ${ }^{d}$ In runs $5-14, \mathbf{1 5 b} / \mathbf{1 6 b}$ ratios determined by ${ }^{1} \mathrm{H}$ NMR and/or HPLC analysis of crude mixtures of products and unreacted starting materials. ${ }^{e}$ In runs 15 and $16, \mathbf{1 8 a} / 19$ a ratios determined from masses of isolated 18a and 19a. ${ }^{f}$ In runs 17 and $18, \mathbf{1 8 b} / \mathbf{1 9 b}$ ratios determined from masses of isolated 18b and 19b and by HPLC analysis of crude mixtures of products and unreacted starting materials. ${ }^{g}$ No 16a was detected by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture of products and unreacted starting materials. ${ }^{h}$ The reaction mixtures of runs $11-14$ contained $0.060,0.086,0.12$, and 0.13 M sodium salicylate, respectively.
into 15 and $16(X=I)$, respectively, by quaternization with MeI in MeCN.

The Diels-Alder reactions of surfactants $\mathbf{1}$ and $\mathbf{2}$ were performed under mixed micellar conditions at concentrations well above their respective cmc values. An excess of cycloadduct $\mathbf{1 5}$ over 16 was obtained in each run. The former is the expected regioisomer if $\mathbf{1}$ and $\mathbf{2}$ react in their preferred aligned orientations within a mixed micelle, with the quaternary ammonium headgroups at the aggregate $-\mathrm{H}_{2} \mathrm{O}$ interface and the remainder of each surfactant extended into the mixed micelle interior. These orientations for 1a and 2a are represented in Figure 1. For simplicity, a flat interface is illustrated, whereas that of a micelle is curved, and the alkyl chains are shown in fully extended conformations, although they are most likely folded. ${ }^{9}$ Approximation of the diene and dienophile units for reaction requires mobility of $\mathbf{1}$ and/or $\mathbf{2}$ along their radial axes. Cycloadduct $\mathbf{1 6}$ results from the reaction of misaligned $\mathbf{1}$ and $\mathbf{2}$ within the mixed micelles and/or within the bulk aqueous phase. The latter involves $\mathbf{1}$ and $\mathbf{2}$ in monomeric and/or premicellar forms. ${ }^{10}$ The orientational effects in both are expected to be less than those within the mixed micelles. The 4-tert-butylcatechol in each reaction mixture likely resides at the aggregate$\mathrm{H}_{2} \mathrm{O}$ interface, ${ }^{11}$ resulting in an indeterminate effect, if any, on the $\mathbf{1 5} / \mathbf{1 6}$ ratio.

[^2]

Figure 1. Preferred orientations of $\mathbf{1 5 a}$ and $\mathbf{1 6 a}$ at a surfactant aggregate $-\mathrm{H}_{2} \mathrm{O}$ interface.

The performance of Diels-Alder reactions under unaggregated conditions in $\mathrm{H}_{2} \mathrm{O}$ is impractical given the low emcs of $\mathbf{1}$ and 2. But nevertheless it is interesting to consider the intrinsic regiochemical preferences that would be expected in the cycloadditions of $\mathbf{1}$ and $\mathbf{2}$ in the absence of interfacial orientational effects. The proximity of the positively charged headgroup to the substituted dienophile unit renders the ester group at carbon 1 of $\mathbf{2 a}$ more electron withdrawing than the ester group at carbon $2 .{ }^{12,13}$ For a 2,3-disubstituted 1,3-diene bearing thio and silyl groups, the former is expected to direct the regioselectivity of its Diels-Alder reactions. ${ }^{14}$ The electron-withdrawing inductive effect of $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}^{+} \mathrm{Me}_{3}$ within 1a should not alter this expectation. Overall, the reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ is predicted ${ }^{14}$ to give an excess of cycloadduct 16a over 15a. Note that this expectation is indeed opposite to the regiochemical preference obtained in the mixed micellar system under the influence of interfacial orientational effects (runs 1-4). The cycloaddition of $\mathbf{1 b}$ and $\mathbf{2 b}$ should display no regiochemical preference in the absence of interfacial orientational effects, since the substituents at carbons 1 and 2 within $\mathbf{2 b}$, which contains a tether of six methylene units, are close to being both sterically and electronically equivalent ${ }^{13}$ with respect to the dienophile reaction center.

In runs $11-14$, containing added $\mathbf{1 7}$, the $\mathbf{1 5 b} / \mathbf{1 6 b}$ ratios were higher than those in runs 5-10 without 17. It is known that the addition of $\mathbf{1 7}$ to aqueous solutions of cationic surfactants effects the formation of threadlike micelles. ${ }^{15}$ The higher ordering in these systems associated with the transition from spherical to threadlike micelles is apparently accompanied by greater interfacial ordering that leads to greater $\mathbf{1 5 b} / \mathbf{1 6 b}$ ratios.

A 1:1.4 ratio of regioisomers 18a and 19a, respectively, was obtained in the Diels-Alder reaction of nonsurfactant analogues 7a and 14a in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ (runs 15 and 16). The modest excess of 19a over 18a is consistent with steric effects but inconsistent with electronic effects. The former involves an unfavorable

[^3]interaction between the large dodecyl-containing substituents within the cycloaddition transition state leading to $\mathbf{1 8 a}$, which is unmitigated by hydrophobic association as within mixed micellar 1a and 2a. Electronic effects predict ${ }^{14}$ an excess of 18a over 19a as the result of regiochemical direction by the thio group of $7 \mathbf{a}$ and a greater inductive electron withdrawal by the dodecyl ester group of 14 a relative to its $2-(N, N-$ dimethylamino)ethyl ester group. ${ }^{12,13}$

A $1: 1$ ratio of regioisomers $\mathbf{1 8 b}$ and $\mathbf{1 9 b}$, respectively, was obtained in the Diels-Alder reaction of nonsurfactant analogues $\mathbf{7 b}$ and $\mathbf{1 4 b}$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ (runs 17 and 18), consistent with the expectation that this cycloaddition should display no regiochemical preference since the substituents at carbons 1 and 2 within 14b, which contains a tether of six methylene units, are close to being both sterically and electronically equivalent ${ }^{13}$ with respect to the dienophile reaction center. The $1: 1$ ratio of $\mathbf{1 8 b}$ and 19b is consistent with the likelihood noted above that the cycloaddition of $\mathbf{1 b}$ and $\mathbf{2 b}$ would display no regiochemical preference without interfacial orientational effects.

The 15a/16a ratio of $30: 1$ obtained in the cycloaddition of $\mathbf{1 a}$ and $\mathbf{2 a}$ is substantially greater than the $\mathbf{1 5 b} / \mathbf{1 6 b}$ ratio of 6.6:1 obtained from $\mathbf{1 b}$ and $\mathbf{2 b}$. The greater regioselectivity with the former pair is attributed to the shorter tether between their quaternary ammonium headgroups and 1,3-diene and dienophile groups. The shorter tether provides less opportunity for misalignment of these reactive groups, which can lead to minor regioisomer 16.

A previous study ${ }^{5 \mathrm{a}, \mathrm{b}}$ included the cycloaddition of surfactant dienophile $\mathbf{2 b}$ with surfactant 1,3 -diene $\mathbf{2 0}$, which was generated in situ at $100^{\circ} \mathrm{C}$ by the thermal extrusion of SO_{2} from precursor surfactant 21. Even though the lengths of the tethers between the quaternary ammonium headgroups and dienophile groups of $\mathbf{1 b}$ and $\mathbf{2 0}$ are comparable, the $\mathbf{1 5 b} / \mathbf{1 6 b}$ ratio of $6.6: 1$ obtained from $\mathbf{1 b}$ and $\mathbf{2 b}$ in the present study at $25^{\circ} \mathrm{C}$ is more than twice the $\mathbf{2 2} / \mathbf{2 3}$ ratio of $3.0: 1$ obtained from $\mathbf{2 0}$ and $\mathbf{2 b}$ at $100^{\circ} \mathrm{C} .{ }^{5 \mathrm{a}, \mathrm{b}}$ The greater regioselectivity obtained with the former pair is attributed at least in part to the expected greater organizational abilities of micelles at low compared to high temperatures. Also, 1b, unlike 20, does not contain aromatic groups, which can associate with quaternary ammonium headgroups. ${ }^{16}$ It is possible that 20 's aromatic groups promote looping to the mixed micelle $-\mathrm{H}_{2} \mathrm{O}$ interface, where they can interact with quaternary ammonium groups, resulting in misalignment of $\mathbf{2 0}$ and $\mathbf{2 b}$, with resultant formation of minor regioisomer 23.

As formed, cycloadducts $\mathbf{1 5}$ and $\mathbf{1 6}$, which are surfactants themselves, no doubt remain within the mixed micelles of $\mathbf{1}$ and 2, thereby changing the detailed nature of the aggregates as the reaction proceeds. But note that about the same 15/16 ratio was obtained in run 14 as in runs $11-13$, suggesting that the regioisomer ratio does not change appreciably with the extent of reaction. Thus regiochemical control in the cycloadditions derives from interfacial effects that are relatively insensitive to specific aggregate composition, as was the case in the cycloaddition of $\mathbf{2 b}$ and $\mathbf{2 0}$ to give $\mathbf{2 2}$ and $\mathbf{2 3}$. ${ }^{5 \mathrm{a}}$ It is not known whether the $\mathbf{1 5} / \mathbf{1 6}$ ratios are kinetically or thermodynamically controlled, although the former is more likely.

Characterization of Diels-Alder Cycloadducts. Surfactant cycloadducts $\mathbf{1 5}$ and 16 and nonsurfactant cycloadducts $\mathbf{1 8}$ and 19 were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and FAB high-resolution mass spectrometry. Cycloadducts 15a and 16a were also characterized by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR spectroscopy in both $\mathrm{CD}_{3} \mathrm{OD}$ and CDCl_{3}; spectra are

[^4]

20

found in the Supporting Information. The results from these 2D methods provided definitive structural assignments for 15a and 16a and, in turn, 18a and 19a, since the former were prepared from the latter as noted above.

The trans stereochemistry of cycloadducts $\mathbf{1 5}$ and $\mathbf{1 6}$ is consistent with the known stereochemical course of Diels-Alder reactions ${ }^{17}$ and with the trans stereochemistry established for closely related cycloadducts 22 and $23 .{ }^{5 a, c}$ On the basis of analogy to the known half-chair conformation ${ }^{18}$ of $\mathbf{2 2}$ in $\mathrm{CDCl}_{3},{ }^{5 \mathrm{a}, \mathrm{c}}$ it is probable that 15a also adopts a half-chair conformation with diequatorial ester groups in CDCl_{3} and $\mathrm{CD}_{3^{-}}$ OD as well. Since the signals for the cyclohexene ring hydrogens in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 5 a}$ and $\mathbf{1 6 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$ have similar appearances, 16a should also have a half-chair conformation. The probable half-chair conformations of $\mathbf{1 5 a}$ and $\mathbf{1 6 a}$ in $\mathrm{CD}_{3^{-}}$ OD with diequatorial ester groups are illustrated in Figure 2.
In the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR spectrum (400 MHz) of the major diastereomer of the cycloadduct pair 15a,16a in $\mathrm{CD}_{3} \mathrm{OD}$, several pertinent correlations were observed, which correspond to hydrogens on both carbon- 1^{\prime} and carbon- 2^{\prime} interacting with two of the following three hydrogen sets: $\mathrm{N}_{\mathrm{a}}{ }^{+} \mathrm{Me}_{3}, \mathrm{~N}_{\mathrm{b}}{ }^{+} \mathrm{Me}_{3}$, and one of the hydrogens on carbon- $1^{\prime \prime}$. The uncertainty derives from overlap of the signal for one of the $\mathrm{N}^{+} \mathrm{Me}_{3}$ groups with that for a hydrogen on carbon $-1^{\prime \prime}$. The assignments for the $\mathrm{N}^{+} \mathrm{Me}_{3}$ groups of Figure 2 are arbitrary. Regardless of which hydrogen sets are involved with hydrogens on carbon -1^{\prime} and carbon- 2^{\prime}, the correlations indicate through-space interactions between the two chains bearing the $\mathrm{N}^{+} \mathrm{Me}_{3}$ groups.

In the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR spectrum (400 MHz) of the minor diastereomer of the cycloadduct pair 15a,16a in $\mathrm{CD}_{3} \mathrm{OD}$, several pertinent correlations were observed, which correspond to hydrogens on both carbon- 1^{\prime} and carbon- 2^{\prime} interacting with one of the following three hydrogen sets: $\mathrm{N}_{\mathrm{a}}{ }^{+} \mathrm{Me}_{3}, \mathrm{~N}_{\mathrm{b}}{ }^{+} \mathrm{Me}_{3}$, and one of the hydrogens on carbon- $1^{\prime \prime}$. As above, the uncertainty derives from overlap of the signal for one of the $\mathrm{N}^{+} \mathrm{Me}_{3}$ groups with that for a hydrogen on carbon- $1^{\prime \prime}$. These correlations do not require, but do not preclude, through-space interactions between the two chains bearing the $\mathrm{N}^{+} \mathrm{Me}_{3}$ groups.

[^5]

16a

Figure 2. Half-chair conformations of 15a and 16a with diequatorial ester groups.

The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR results obtained in $\mathrm{CD}_{3} \mathrm{OD}$ suggest that the major diastereomer is 15a. An inspection of CPK molecular models indicates that interactions between the two chains bearing the $\mathrm{N}^{+} \mathrm{Me}_{3}$ groups are much more probable for 15a than for 16a, given their relative dispositions on the cyclohexene rings.

In the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR spectrum $(400 \mathrm{MHz})$ of the major diastereomer of the $\mathbf{1 5 a}, \mathbf{1 6 a}$ pair in CDCl_{3}, a strong correlation was observed which corresponds to one of the hydrogens on carbon-3 interacting with one or both of the dodecyl chains. Only a weak correlation, if any, was observed between one of the hydrogens on carbon-6 or the hydrogen on carbon-4 with one or both of the dodecyl chains. In the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR spectrum (400 MHz) of the minor diastereomer of the $\mathbf{1 5 a}, \mathbf{1 6 a}$ pair in CDCl_{3}, two correlations of comparable intensity were observed, which correspond to one or both of the hydrogens on each of carbon- 3 and carbon- 6 interacting with one or both of the dodecyl chains.

The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR results obtained in CDCl_{3} are consistent with the assignment of $\mathbf{1 5 a}$ as the major cycloadduct. It is reasonable that a hydrogen on carbon-3 of 15a interacts with one or both dodecyl chains, given the proximity of carbon-3 to the chain-bearing carbons, and that one or both hydrogens on each of carbon-3 and carbon-6 of 16a interact with an alkyl chain, given the proximity of carbon-3 and carbon-6 to chainbearing carbons.

The structural assignments for isomers $\mathbf{1 5 b}$ and $\mathbf{1 6 b}$ were made by analogy to those for 15a and 16a. The assignments for $\mathbf{1 5}$ and $\mathbf{1 6}$ are also consistent with their HPLC behavior and analogy to closely related systems. ${ }^{5}$

Monolayer Study. Surface pressure vs molecular area isotherms for $\mathbf{1 5 a}$ and $\mathbf{1 6 a}$ on a pH 8.0 buffer at $23^{\circ} \mathrm{C}$ are illustrated in Figure 3. The two diastereomers gave decidedly different isotherms, with lift-off areas of 120 ± 10 and 90 ± 8 $\AA^{2} /$ molecule for 15a and 16a, respectively. At lift-off, molecules at the air $-\mathrm{H}_{2} \mathrm{O}$ interface begin to interact with each other, and as compression continues, intermolecular interactions produce measurable surface pressures. For both 15a and 16a, the surface pressures increase monotonically after lift-off with decreasing area per molecule, until monolayer film collapse begins at ca. 50 and $47 \mathrm{mN} / \mathrm{m}$, respectively. The limiting molecular areas (just prior to collapse) are ca. 93 and $61 \AA^{2} /$ molecule for 15a and 16a, respectively.

It is interesting to consider the orientations of 15a and 16a with respect to the air $-\mathrm{H}_{2} \mathrm{O}$ interface at their limiting molecular areas. At the outset, it is reasonable to assume that the

Figure 3. Surface pressure vs molecular area isotherms for the compression of monolayers of $\mathbf{1 5 a}$ and $\mathbf{1 6 a}$ on a pH 8.0 buffer (10.0 mM Tris, 1.0 M NaCl) subphase at $23^{\circ} \mathrm{C}$ with a compression rate of $3 \AA^{2} / \mathrm{min} /$ molecule. Isotherms are representative of four different experiments; vertical bars correspond to mean $\pm \sigma$, and horizontal bars to mean $\pm \sigma$ for molecular areas at lift-off and collapse.
hydrophilic quaternary ammonium headgroups are at the interface and the dodecyl chains are extended into the air. Now consider a compact conformation for each of 15a and 16a within which the two quaternary ammonium headgroups as well as the two fully extended dodecyl chains are side-by-side along a common axis, separated by the substituted cyclohexene ring. ${ }^{19}$ It is unlikely that both 15a and 16a are in such a conformation, however, with the quaternary ammonium headgroups at the interface and the remaining structural units extended directly into the air. An inspection of CPK molecular models of these compact conformations clearly indicates that 15a has a lesser cross sectional area than $\mathbf{1 6 a}$, opposite to the actual limiting molecular areas. The discrepancy between expectations based on these conformations and the experimental results may derive from a preference for the interface of one or both of the ester groups of 15a, but not of 16a. An ester group has a weak attraction for $\mathrm{H}_{2} \mathrm{O}$ within a monolayer, relative to the strong attraction of a quaternary ammonium group. ${ }^{20}$

In summary, the Diels-Alder reaction of 1a and 2a gave a 30:1 ratio of cycloadducts $\mathbf{1 5 a}$ and 16a, respectively, and that of $\mathbf{1 b}$ and $\mathbf{2 b}$ a $6.6: 1$ ratio of $\mathbf{1 5 b}$ and $\mathbf{1 6 b}$, respectively. The greater regioselectivity of the former reaction is ascribed to the shorter tether between 1a and 2a's reactive functional groups and quaternary ammonium headgroups. Interfacial and related orientational effects associated with surfactant aggregation can impart substantial regioselectivity to a thermal cycloaddition reaction. In a monolayer study of $\mathbf{1 5 a}$ and $\mathbf{1 6 b}$, the latter occupied less area per molecule at the air $-\mathrm{H}_{2} \mathrm{O}$ interface.

Experimental Section

General Procedures and Materials. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6$ $\mathrm{MHz}) \mathrm{NMR}$ spectra were recorded in CDCl_{3} unless noted otherwise with $\mathrm{Me}_{4} \mathrm{Si}$ or $\mathrm{CHCl}_{3}\left(\delta 7.27\right.$ relative to $\mathrm{Me}_{4} \mathrm{Si}$) and CDCl_{3} (center line at $\delta 77.00$ relative to $\mathrm{Me}_{4} \mathrm{Si}$) as internal standards, respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra recorded in $\mathrm{CD}_{3} \mathrm{OD}$ employed $\mathrm{CD}_{2} \mathrm{HOD}$ (center line at $\delta 3.30$ relative to $\mathrm{Me}_{4} \mathrm{Si}$) and $\mathrm{CD}_{3} \mathrm{OD}$ (center line at δ 49.00 relative to $\mathrm{Me}_{4} \mathrm{Si}$) as internal standards, respectively. J values are in hertz. High-resolution FAB MS was performed at the Washington University Resource for Biomedical and Bioorganic Mass Spectrometry. GC-MS was performed with a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ (i.d.) capillary column

[^6](HP 190915-433) containing HP-5MS (cross-linked 5\% Ph Me silicone; film thickness $0.25 \mu \mathrm{~m}$). Medium-pressure liquid chromatography (MPLC) was performed with a Bæström Separo AB column packed $(1.5 \mathrm{~cm} \times 10 \mathrm{~cm})$ with silica gel (EM 9385). Sonication was performed with a Branson 2200 (125 W) ultrasonic cleaner. The cac values, averages of two runs with different samples for each surfactant, were obtained from plots of surface tension (du Noüy ring) vs [surfactant] using a Fisher model 20 tensiometer. Krafft temperatures were determined according to a literature procedure. ${ }^{21}$ Analytical and preparative reversed-phase HPLC were performed with evaporative light scattering detection (Sedex 55) on a $25-\mathrm{cm} \times 4.6-\mathrm{mm}$ (i.d.) $8-\mu \mathrm{m} \mathrm{C} 8$ column (Rainin R0086300C8) and a $25-\mathrm{cm} \times 21.4-\mathrm{mm}$ (i.d.) $8-\mu \mathrm{m}$ C8 column (Rainin R0080320C8), respectively. Eluants were prepared with ammonium trifluroacetate and HPLC-grade $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{MeCN}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Solvents were distilled and stored under N_{2}. Tetrahydrofuran (THF) was freshly distilled from benzophenone K ketyl. Pentane and hexanes were distilled from CaH_{2} and stored over $4 \AA$ molecular sieves; $\mathrm{Et}_{3} \mathrm{~N}$ was likewise distilled and stored over KOH . Both $\mathrm{CH}_{2^{-}}$ Cl_{2} and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ were dried and stored over $4 \AA$ molecular sieves. Extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All melting points were taken in open capillary tubes and are uncorrected. Ratios describing the compositions of solvent mixtures represent relative volumes. Elemental analyses were performed by Atlantic Microlab, Norcross, GA.

Bis[2-(N, N-Dimethylamino)ethyl] Disulfide (6a). ${ }^{22}$ A solution of $2.22 \mathrm{~g}(24.5 \mathrm{mmol})$ of NaClO_{2} in 35 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise to a stirred solution of $4.56 \mathrm{~g}(32.2 \mathrm{mmol})$ of $2-(\mathrm{N}, \mathrm{N}$-dimethylamino)ethanethiol hydrochloride (8) (Aldrich) in 35 mL of MeOH held at $0-5^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min , it was rotary evaporated, and the residue was basified to pH 11 with aqueous $10 \% \mathrm{NaOH}$ and extracted with three $60-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried and rotary evaporated to leave 2.74 $\mathrm{g}(82 \%)$ of $\mathbf{6 a}:{ }^{1} \mathrm{H}$ NMR $\delta 2.79\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~S}\right), 2.59(\mathrm{~m}, 4 \mathrm{H}, 2$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.26\left(\mathrm{~s}, 12 \mathrm{H}, 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 58.98,45.58,37.15$.

2-[2-(N, N-Dimethylamino)ethylthio]-3-dimethyldodecylsilyl-1,3butadiene (7a). Into one side of a double round-bottom flask was placed $1.49 \mathrm{~g}(3.92 \mathrm{mmol})$ of 2,3-bis(trimethylstannyl)-1,3-butadiene $(\mathbf{3})^{8}$ in 7.0 mL of THF and into the other side, $0.808 \mathrm{~g}(3.88 \mathrm{mmol})$ of $\mathbf{6 a}$ in 3.0 mL of THF. To the diene solution at $-78{ }^{\circ} \mathrm{C}$ (dry ice-acetone) $3.10 \mathrm{~mL}(3.94 \mathrm{mmol})$ of 1.27 M MeLi in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise over 8 min . The resultant yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , followed by the addition of a solution of $1.05 \mathrm{~g}(3.99 \mathrm{mmol})$ of chlorododecyldimethylsilane (4a) (Aldrich) in 3.0 mL of THF. After the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $20 \mathrm{~min}, 3.10 \mathrm{~mL}(3.94$ mmol) of 1.27 M MeLi in $\mathrm{Et}_{2} \mathrm{O}$ was added, followed by the addition of the $\mathbf{6 a}$ solution in one portion. After the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , it was added to 50 mL of aqueous 1.5 M NaOH and extracted with three $50-\mathrm{mL}$ portions of $1: 1 \mathrm{Et}_{2} \mathrm{O}$-pentane. The combined extracts were dried and rotary evaporated to give an oil that was chromatographed (MPLC) on silica gel with hexanes-EtOAc (100:0 to 20:80) as eluant to yield $0.198 \mathrm{~g}(13 \%)$ of 7 a as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 5.92(\mathrm{~d}, J=2.9,1 \mathrm{H}, \mathrm{CH}), 5.49(\mathrm{~d}, J=2.9,1 \mathrm{H}, \mathrm{CH}), 5.03(\mathrm{~s}$, $1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.78\left(\mathrm{t}, J=7.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.30\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.20-1.37\left(\mathrm{~m}, 20 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{10}\right), 0.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.15\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 150.92$, 147.17, 128.65, 108.43, 58.07, 45.27, 33.65, 31.67, 29.76, 29.74, 29.70, $29.65,29.40,29.39,23.87,22.74,15.44,14.17,-2.64$. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{NSSi}(\mathrm{M}+\mathrm{H}) 384.3120$, found 384.3110 .

2-[[3-(Dimethyldodecylsilyl)-1,3-butadien-2-yl]thio]- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-tri-methyl-1-ethanaminium Iodide (1a). A mixture of $0.198 \mathrm{~g}(0.516$ $\mathrm{mmol})$ of $7 \mathbf{a}, 0.223 \mathrm{~g}(1.57 \mathrm{mmol})$ of MeI, and 15 mL of THF was stirred at $25^{\circ} \mathrm{C}$ overnight and rotary evaporated to give $0.248 \mathrm{~g}(91 \%)$ of 1a as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\delta 5.95(\mathrm{~d}, J=2.6,1 \mathrm{H}, \mathrm{CH})$, $5.55(\mathrm{~d}, J=2.6,1 \mathrm{H}, \mathrm{CH}), 5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.69$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.55\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 3.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.25(\mathrm{~s}$, $\left.20 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{10}\right), 0.87\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.14(\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 150.31,144.24,130.00,114.00,65.70,54.07$,
(21) Démarcq, M.; Dervichian, D. Bull. Soc. Chim. Fr. 1945, 12, 939.
(22) (a) Loibner, H.; Pruckner, A.; Sütz, A. Tetrahedron Lett. 1984, 25, 2535. (b) Suzuki, T.; Imaeda, K.; Kubota, M.; Takagi, H. Jpn. J. Pharm. Chem. 1950, 22, 464.
33.56, 31.89, 29.59, 29.35, 29.33, 29.67, 29.62, 24.84, 23.77, 22.66, $15.24,14.11,-2.65$. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{NSSi}$ (cation) 398.3277, found 398.3276.

6-(N, N-Dimethylamino)-1-hexanol (10). ${ }^{23}$ A modified literature procedure ${ }^{24}$ was followed. A mixture of $11.4 \mathrm{~g}(83.7 \mathrm{mmol})$ of 6-chloro-1-hexanol (Aldrich) and $6.07 \mathrm{~g}(101 \mathrm{mmol})$ of N, N-dimethylhydrazine was held at $50^{\circ} \mathrm{C}$ overnight, and the resultant waxlike solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give 9 that was used without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.57\left(\mathrm{t}, J=6.4,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.30(\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.42$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. A solution of $17.4 \mathrm{~g}(0.252 \mathrm{~mol})$ of NaNO_{2} in 60 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise to a solution of the above 9 in 60 mL of aqueous 4 M HCl held at $0-5^{\circ} \mathrm{C}$. After the resultant mixture was stirred at $5-10^{\circ} \mathrm{C}$ for 1 h and then at $25^{\circ} \mathrm{C}$ for 1 h , it was basified to pH 13.5 with 3 M NaOH and extracted three times with $80-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried and rotary evaporated to leave a residue that was distilled (Kugelrohr) to give $8.78 \mathrm{~g}(72 \%)$ of 10 as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 3.64\left(\mathrm{t}, J=6.6,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.27(\mathrm{t}, J=7.5$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.36\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 62.73,59.88,45.63,32.90$, 27.73, 27.31, 25.83.

6-(N, N-Dimethylamino)-1-hexanethiol (12). ${ }^{25}$ A modified literature procedure ${ }^{26}$ was followed. A mixture of $4.85 \mathrm{~g}(33.4 \mathrm{mmol})$ of $\mathbf{1 0}$, $3.12 \mathrm{~g}(41.0 \mathrm{mmol})$ of thiourea, and $11.4 \mathrm{~mL}(0.101 \mathrm{~mol})$ of 48% hydrobromic acid was refluxed for 3.5 days to give 11, which was not isolated. After $4.05 \mathrm{~g}(0.101 \mathrm{~mol})$ of NaOH was added to the reaction mixture at $25^{\circ} \mathrm{C}$, it was refluxed for an additional 1.5 h . The organic phase was separated while the reaction mixture was still hot, and the aqueous phase was diluted with 45 mL of $\mathrm{H}_{2} \mathrm{O}$, basified to pH 13 with aqueous 3 M NaOH , and extracted with three $50-\mathrm{mL}$ portions of CHCl_{3}. The combined organic phases were dried and rotary evaporated, and the residue was distilled (Kugelrohr) to give $4.20 \mathrm{~g}(78 \%)$ of $\mathbf{1 2}$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 2.53\left(\mathrm{q}, J=7.4,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.28(\mathrm{t}, J=7.5,2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.23\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.63\left(\mathrm{p}, J=7.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $1.25-1.51\left(\mathrm{~m}, 7 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{SH}\right)$. GC MS m/z 161 (M), 128, 58.

Bis[6-($\boldsymbol{N}, \boldsymbol{N}$-dimethylamino)hexyl] Disulfide (6b). A modified literature procedure ${ }^{27}$ was followed. A solution of $4.21 \mathrm{~g}(26.1 \mathrm{mmol})$ of $\mathbf{1 2}$ in 40 mL of MeOH was added dropwise to a stirred solution of $1.79 \mathrm{~g}(19.8 \mathrm{mmol})$ of NaClO_{2} in 60 mL of $\mathrm{H}_{2} \mathrm{O}$ held at $0-5^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min , it was rotary evaporated, and the residue was diluted with 40 mL of $\mathrm{H}_{2} \mathrm{O}$, basified to pH 13 with 3 M NaOH , and extracted with three $60-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried and rotary evaporated to leave $4.19 \mathrm{~g}(100 \%)$ of $\mathbf{6 b}$ as an oil that was used without further purification: ${ }^{1} \mathrm{H}$ NMR $\delta 2.68\left(\mathrm{t}, J=7.4,4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~S}\right), 2.38(\mathrm{t}, J=$ $\left.7.5,4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}\right), 2.23\left(\mathrm{~s}, 12 \mathrm{H}, 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.69(\mathrm{p}, J=7.4,4 \mathrm{H}, 2$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.48\left(\mathrm{p}, J=7.4, \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.25-$ $1.45\left(\mathrm{~m}, 8 \mathrm{H}, 2\left(\mathrm{CH}_{2}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 59.99,45.71,39.26,29.35,28.69$, 27.83, 27.30. GC MS m / z 160, 128, 58.

2-[6-(N, N-Dimethylamino)hexylthio]-3-dimethyloctylsilyl-1,3butadiene (7b). Into one side of a double round-bottom flask was placed $1.10 \mathrm{~g}(2.90 \mathrm{mmol})$ of $\mathbf{3}$ in 20.0 mL of THF and into the other side $0.605 \mathrm{~g}(2.90 \mathrm{mmol})$ of chlorodimethyloctylsilane ($\mathbf{4 b}$) (United Chemical Technologies) in 5.0 mL of THF. To the diene solution at $-78{ }^{\circ} \mathrm{C}$ was added $2.20 \mathrm{~mL}(3.06 \mathrm{mmol})$ of 1.39 M MeLi in $\mathrm{Et}_{2} \mathrm{O}$ dropwise over 4 min . After the resultant bright yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , it was transferred in one portion to the silane solution at $-78^{\circ} \mathrm{C}$. The resultant colorless mixture was stirred for 40 min at $-78^{\circ} \mathrm{C}$, followed by the dropwise addition over 10 min of $2.40 \mathrm{~mL}(3.34 \mathrm{mmol})$ of 1.39 M MeLi in $\mathrm{Et}_{2} \mathrm{O}$. The yellow solution, held at $-78{ }^{\circ} \mathrm{C}$, was stirred for 10 min , followed by the addition of $0.995 \mathrm{~g}(3.11 \mathrm{mmol})$ of $\mathbf{6 b}$ in 5.0 mL of THF. The resultant colorless solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then poured into a mixture

[^7]of 50 mL of aqueous 1.5 M NaOH and $100 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$. The organic layer was extracted with 1.5 M NaOH , dried, and rotary evaporated. The residue was chromatographed (MPLC) on silica gel with $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}-\mathrm{MeOH}(100: 0$ to $80: 20)$ as eluant to give $0.546 \mathrm{~g}(49 \%)$ of $\mathbf{7 b}$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 5.91(\mathrm{~d}, J=2.9,1 \mathrm{H}, \mathrm{CH}), 5.47(\mathrm{~d}, J=2.9$, $1 \mathrm{H}, \mathrm{CH}), 5.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.64(\mathrm{t}, J=7.4,2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.26\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.64(\mathrm{p}, J=7.4$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.21-1.54\left(\mathrm{~m}, 18 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{6},\left(\mathrm{CH}_{2}\right)_{3}\right), 0.89(\mathrm{t}, J=6.9$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.14\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR δ $151.37,148.00,128.49,107.60,59.90,45.54,33.82,32.16,32.10,29.51$, 29.49, 29.19, 28.55, 27.61, 27.27, 24.05, 22.90, 15.64, 14.35, -2.45. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{NSSi}$ (M + H) 384.3120, found 384.3134 .

6-[[3-(Dimethyloctylsilyl)-1,3-butadien-2-yl]thio]- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethyl-1-hexanaminium Iodide (1b). A mixture $0.520 \mathrm{~g}(1.35 \mathrm{mmol})$ of 7b, $0.57 \mathrm{~g}(4.0 \mathrm{mmol})$ of MeI, and 20 mL of THF was stirred at $25^{\circ} \mathrm{C}$ overnight and rotary evaporated. The residue was chromatographed (MPLC) on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (100:0 to $88: 12$) as eluant to give $0.423 \mathrm{~g}(59 \%)$ of $\mathbf{1 b}$ as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\delta 5.90$ $(\mathrm{d}, J=2.9,1 \mathrm{H}, \mathrm{CH}), 5.47(\mathrm{~d}, J=2.9,1 \mathrm{H}, \mathrm{CH}), 5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.47\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 2.64(\mathrm{t}$, $\left.J=7.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.64(\mathrm{p}, J=7.2,2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.40-1.55\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.20-1.33\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{6}\right)$, $0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.14\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 151.21,147.59,128.59,108.10,67.32,53.97,33.80,32.14$, $31.78,29.50,29.47,28.64,28.26,25.67,24.02,23.31,22.89,15.60$, 14.36, -2.44. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{NSSi}$ (cation) 398.3277, found 398.3282.

2-(N, N-Dimethylamino)ethyl Hydrogen Fumarate (13a). To a stirred mixture of $3.98 \mathrm{~g}(40.6 \mathrm{mmol})$ of maleic anhydride and 10 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ at $25{ }^{\circ} \mathrm{C}$ was added $3.51 \mathrm{~g}(39.4 \mathrm{mmol})$ of $2-(N, N-$ dimethylamino)ethanol (Aldrich) dropwise over 15 min . The resultant dark purple reaction mixture was refluxed for 3.5 h and rotary evaporated. A slurry of the residue and 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was filtered, and the filtrate was rotary evaporated to leave a solid that was recrystallized from MeOH to give $3.60 \mathrm{~g}(47 \%)$ of 13a: $\mathrm{mp} 90 \rightarrow 130$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.90\left(\mathrm{~d}, J=15.7,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}=\mathrm{CH}_{\mathrm{b}}\right), 6.52(\mathrm{~d}$, $\left.J=15.7,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}=\mathrm{CH}_{\mathrm{b}}\right), 4.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.89\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.74,167.31,143.34$, 129.14, 59.35, 57.00, 43.38. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.82$; H, 7.37. Found: C, 46.63; H, 7.22.

2-(N, N-Dimethylamino)ethyl Dodecyl Fumarate (14a). A literature esterification procedure ${ }^{28}$ was followed. A mixture of 1.24 g (6.62 $\mathrm{mmol})$ of 13a, $1.23 \mathrm{~g}(6.60 \mathrm{mmol})$ of 1-dodecanol, $1.50 \mathrm{~g}(7.27 \mathrm{mmol})$ of N, N^{\prime}-dicyclohexylcarbodiimide (DCC), $88.7 \mathrm{mg}(0.726 \mathrm{mmol})$ of 4-(N, N-dimethylamno)pyridine (DMAP), and 33 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred under N_{2} for 18 h and then filtered and rotary evaporated. The resultant oil was chromatographed (MPLC) on silica gel with hexanes-$\mathrm{EtOAc}-\mathrm{Et}_{3} \mathrm{~N}(100: 0: 0$ to $60: 30: 10)$ as eluant to give $1.24 \mathrm{~g}(53 \%)$ of 14a as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.89(\mathrm{AB}, J=15.8,2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 4.32(\mathrm{t}$, $\left.J=5.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.19\left(\mathrm{t}, J=6.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.65(\mathrm{t}, J=5.6,2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.32\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.68\left(\mathrm{p}, J=7.0,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.27$ $\left(\mathrm{m}, 18 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{9}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.27,165.18,134.17$, $133.51,65.71,63.23,57.83,45.90,32.10,29.82,29.75,29.69,29.53$, 29.41, 28.69, 26.06, 22.88, 14.31. FAB HRMS (3-nitrobenzyl alcohol-glycerol-trifluoroacetic acid matrix) calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})$ 356.2801, found 356.2810.
(E)-2-[[[2-(Dodecoxycarbonyl)ethenyl]carbonyl]oxy]- N, N, N-tri-methyl-1-ethanaminium Iodide (2a). A mixture of $0.652 \mathrm{~g}(1.83$ $\mathrm{mmol})$ of $\mathbf{1 4 a}, 0.798 \mathrm{~g}(5.62 \mathrm{mmol})$ of MeI, and 10 mL of MeCN was stirred under N_{2} at $25^{\circ} \mathrm{C}$ overnight and rotary evaporated. The residue was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeCN}$ to give $0.640 \mathrm{~g}(70 \%)$ of $\mathbf{2 a}$: mp $147-149{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $) \delta 6.87(\mathrm{AB}, J=15.8,1 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$, $4.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.20(\mathrm{t}, J=6.8,2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.59\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 1.68\left(\mathrm{p}, J=7.0,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.26$ $\left(\mathrm{m}, 18 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{9}\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.74,164.19,135.83$, $131.85,66.09,65.14,59.00,55.06,32.10,29.83,29.78,29.71,29.54$, 29.43, 28.66, 26.03, 22.88, 14.33. FAB HRMS (3-nitrobenzyl alcohol-

[^8]glycerol-trifluoroacetic acid matrix) calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{4}$ (cation) 370.2957, found 370.2962.

6-(N, N-Dimethylamino)hexyl Hydrogen Fumarate (13b). To a stirred mixture of $2.82 \mathrm{~g}(28.8 \mathrm{mmol})$ of maleic anhydride and 25 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ at $25^{\circ} \mathrm{C}$ was added dropwise during $10 \mathrm{~min} 4.35 \mathrm{~g}(30.0$ mmol) of 10. Then the reaction mixture was refluxed for 6 h and rotary evaporated, and the resultant oil was chromatographed (MPLC) on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ (100:0:0 to $0: 92: 8$) to yield 2.23 g (32\%) of 13b: mp 82-87 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.95\left(\mathrm{~d}, J=15.7,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}=\right.$ $\left.\mathrm{CH}_{\mathrm{b}}\right), 6.62\left(\mathrm{~d}, J=15.7,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}=\mathrm{CH}_{\mathrm{b}}\right), 4.17\left(\mathrm{t}, J=5.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, $2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.69\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR δ $171.55,166.87,141.32,128.82,64.27,57.93,42.80,28.83,26.91,26.15$, 25.12. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.12 ; \mathrm{H}, 8.79$. Found: C, 57.37, H, 8.69.

6-(N, N-Dimethylamino)hexyl Octyl Fumarate (14b). A mixture of $1.75 \mathrm{~g}(7.19 \mathrm{mmol})$ of $\mathbf{1 3 b}, 1.63 \mathrm{~g}(7.90 \mathrm{mmol})$ of DCC, 98.9 mg $(0.810 \mathrm{mmol})$ of DMAP, $0.936 \mathrm{~g}(7.19 \mathrm{mmol})$ of 1-octanol, and 35 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred under N_{2} for 24 h and then filtered and rotary evaporated. The resultant oil was chromatographed (MPLC) on silica gel with hexanes-EtOAc- $\mathrm{Et}_{3} \mathrm{~N}$ (100:0:0 to $60: 15: 25$) to yield 1.17 g (46%) of $\mathbf{1 4 b}$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.82(\mathrm{AB}, J=18.0,2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$, $4.19\left(\mathrm{t}, J=6.8,4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 2.29\left(\mathrm{t}, J=7.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.25(\mathrm{~s}$, $\left.6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 1.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.49\left(\mathrm{p}, J=7.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}\right), 1.21-1.44\left(\mathrm{~m}, 14 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2},\left(\mathrm{CH}_{2}\right)_{5}\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.32,133.88,133.78,65.75,65.59,59.85,45.59,31.97,29.37$, $28.70,28.68,27.66,27.25,26.07,22.84,14.30$. FAB HRMS (3nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H}) 356.2801$, found 356.2773.

Diels-Alder Reactions. All Diels-Alder reactions were performed under N_{2}, and the results are summarized in Table 1. In each run, the total yield of cycloadducts was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture of products and unreacted starting materials, and the ratio of regioisomeric cycloadducts was determined, as described below, by one or more or the following methods: ${ }^{1} \mathrm{H}$ NMR analysis; HPLC analysis; masses of isolated regioisomers. The $\mathbf{1 5 b} / \mathbf{1 6 b}$ ratios in some runs and the $\mathbf{1 8 b} \mathbf{1 9 b}$ ratios in others were obtained by both HPLC analysis and either ${ }^{1} \mathrm{H}$ NMR analysis or the masses of isolated regioisomers, respectively. Since the same regioisomer ratio was obtained in each instance by both methods, the relative response ratio for the $\mathbf{1 5 b}, \mathbf{1 6 b}$ and $\mathbf{1 8 b}, \mathbf{1 9 b}$ pairs in their HPLC analyses is $1: 1$. It is reasonably assumed that the relative response ratio in HPLC analysis of the 15a,16a pair is also $1: 1$.
(a) 1a and 2a. The procedure for run 3 is as follows, and those for other runs were analogous. A mixture of $20.6 \mathrm{mg}(0.0414 \mathrm{mmol})$ of 2a and 3.0 mL of $\mathrm{H}_{2} \mathrm{O}$ was sonicated at $45^{\circ} \mathrm{C}$ for ca. 5 min to give a clear solution, followed by the addition of $0.45 \mathrm{mg}(0.0027 \mathrm{mmol})$ of 4 -tert-butylcatechol and $13.6 \mathrm{mg}(0.0259 \mathrm{mmol})$ of $\mathbf{1 a}$. The resultant mixture was sonicated at $45^{\circ} \mathrm{C}$ for 3 min and stirred at $25^{\circ} \mathrm{C}$ for 48 h . Then the reaction mixture was diluted with MeCN and rotary evaporated at ca. $45{ }^{\circ} \mathrm{C}$ to leave an amorphous solid, which was analyzed by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and analytical HPLC (eluant $=0.020 \mathrm{M}$ ammonium trifluroacetate in $85.5: 9.5: 5 \mathrm{MeCN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeOH ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times $=3.5 \mathrm{~min}$ for $\mathbf{2 a}, 4.2$ min for $\mathbf{1 6 a}, 4.7 \mathrm{~min}$ for $\mathbf{1 a}$, and 5.7 min for $\mathbf{1 5 a}$). The results are given in runs $1-4$ of Table 1.
(b) $\mathbf{1 b}$ and $\mathbf{2 b}$. The procedure for run 5 is as follows, and those for other runs were analogous. A mixture of $33.1 \mathrm{mg}(0.0630 \mathrm{mmol})$ of $\mathbf{1 b}$ and 3.0 mL of $\mathrm{H}_{2} \mathrm{O}$ was sonicated at $25^{\circ} \mathrm{C}$ for ca. 15 min to give a cloudy solution, followed by the addition of $122 \mathrm{mg}(0.245 \mathrm{mmol})$ of $\mathbf{2 b}$ and $1.0 \mathrm{mg}(0.0060 \mathrm{mmol})$ of 4-tert-butylcatechol. The resultant mixture was stirred at $25^{\circ} \mathrm{C}$ for 21 h , becoming clear by the end of this time. Then the reaction mixture was diluted with MeCN and rotary evaporated at ca. $45{ }^{\circ} \mathrm{C}$ to leave an amorphous solid, which was analyzed by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and analytical HPLC (eluant $=0.020 \mathrm{M}$ ammonium trifluroacetate in $90: 10 \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times $=6.2 \mathrm{~min}$ for $\mathbf{1 6 b}$ and 8.4 min for 15b). Preparative HPLC afforded separated 15b and 16b (eluant $=$ same as for analytical HPLC; flow rate $=20.0 \mathrm{~mL} / \mathrm{min}$; retention times $=7.8 \mathrm{~min}$ for $\mathbf{1 6 b}$ and 8.8 min for $\mathbf{1 5 b}$). The results are given in runs $5-10$ of Table 1. Controls demonstrated that any Diels-Alder reaction
of $\mathbf{1 b}$ and $\mathbf{2 b}$ during workup did not affect the $\mathbf{1 5 b} / \mathbf{1 6} \mathbf{b}$ ratio and the yield of $\mathbf{1 5 b}+\mathbf{1 6 b}$.
(c) $\mathbf{1 b}$ and $\mathbf{2 b}$ with Sodium Salicylate. The procedure for run 13 is as follows, and those for other runs were analogous. A mixture of 10.9 $\mathrm{mg}(0.0207 \mathrm{mmol})$ of $\mathbf{1 b}$ and 0.70 mL of $\mathrm{H}_{2} \mathrm{O}$ was sonicated at $25^{\circ} \mathrm{C}$ for ca. 15 min to give a cloudy solution, followed by the addition of $35.6 \mathrm{mg}(0.0790 \mathrm{mmol})$ of $\mathbf{2 b}$ and $0.78 \mathrm{mg}(0.0047 \mathrm{mmol})$ of 4 -tertbutylcatechol. After the resultant cloudy mixture was stirred at $25^{\circ} \mathrm{C}$ for ca. 5 min , it became clear. Then $13.5 \mathrm{mg}(0.0843 \mathrm{mmol})$ of sodium salicylate (Aldrich) was added to give a clear solution with greater viscosity that was stirred at $25^{\circ} \mathrm{C}$ for 46 h . The reaction mixture was diluted with MeCN and rotary evaporated at ca. $45^{\circ} \mathrm{C}$ to leave an amorphous solid, which was analyzed by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and analytical HPLC (eluant $=0.020 \mathrm{M}$ ammonium trifluroacetate in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(80 / 20$ to $95 / 5$ during 20 min); flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times $=6.6 \mathrm{~min}$ for $\mathbf{2 b}, 18.8 \mathrm{~min}$ for $\mathbf{1 6 b}, 19.8 \mathrm{~min}$ for $\mathbf{1 b}$, and 22.8 min for $\mathbf{1 5 b}$). The results are given in runs $11-14$ of Table 1.
(d) 7a and 14a. The results for 7a and 14a are given in runs 15 and 16 of Table 1. The following procedure is for run 16 , and that for run 15 was analogous. A solution of $54.0 \mathrm{mg}(0.141 \mathrm{mmol})$ of $7 \mathrm{a}, 114 \mathrm{mg}$ $(0.321 \mathrm{mmol})$ of $\mathbf{1 4 a}$, and $2.27 \mathrm{mg}(0.0137 \mathrm{mmol})$ of 4-tertbutylcatechol in 2.15 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ was stirred at $80^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was rotary evaporated to leave a heavy oil, which was chromatographed (MPLC) on silica gel with hexanes-EtOAc$\mathrm{Et}_{3} \mathrm{~N}$ (100:0:0 to 70:28:2) as eluant to give 49.2 mg (47\%) of trans-1-[2-(N, N-dimethylamino)ethylthio]-2-(dimethyldodecylsilyl)-4-[2-(N, N -dimethylamino)ethoxycarbonyl]-5-(dodecoxycarbonyl)-1-cyclohexene (19a) as a yellow oil, followed by 38.4 mg (37\%) of trans-1-[2(N, N-dimethylamino)ethylthio]-2-(dimethyldodecylsilyl)-4-(dodecoxycarbonyl)-5-[2-(N,N-dimethylamino)ethoxycarbonyl]-1cyclohexene (18a) as an amorphous solid. For 18a: ${ }^{1} \mathrm{H}$ NMR $\delta 4.28$ ($\mathrm{t}, J=5.6,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.18-$ 2.98 (m containing s at $2.41,24 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$, $\left.2 \mathrm{CH}_{2}, 2 \mathrm{CH}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.25\left(\mathrm{~m}, 38 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{9}\right.$, $\left.\left(\mathrm{CH}_{2}\right)_{10}\right), 0.88\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.17\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}{ }^{-}\right.$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.81,174.26$, $139.62,138.05,65.19,62.03,58.93,57.47,45.46,44.94,42.09,41.67$, $33.96,33.93,32.14,29.97,29.89,29.85,29.82,29.79,29.66,29.58$, $29.49,28.81,26.09,24.26,22.91,16.49,14.35,-1.34,-1.42$. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{42} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M}+$ H) 739.5843, found 739.5838. For 19a: ${ }^{1} \mathrm{H}$ NMR $\delta 4.26(\mathrm{t}, J=5.7$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.88-2.97(\mathrm{~m}, 1 \mathrm{H})$, $2.76-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.18-$ 2.47 (m containing 2 s at 2.35 and $2.36,14 \mathrm{H}$ total including $2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$), $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.25\left(\mathrm{~m}, 38 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{9},\left(\mathrm{CH}_{2}\right)_{10}\right), 0.88(\mathrm{t}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.15$ $\left(\mathrm{s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.94,174.25,139.55,138.26$, 65.28, 62.31, 59.09, 57.64, 45.61, 45.11, 42.18, 41.57, 33.95, 33.87, 32.12, 29.95, 29.87, 29.84, 29.76, 29.64, 29.56, 29.48, 28.93, 28.79, $26.08,24.25,22.90,16.49,14.33,-1.34,-1.44$. FAB HRMS (3nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{42} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M}+\mathrm{H}) 739.5843$, found 739.5839 .
(e) $\mathbf{7 b}$ and 14b. The results for $\mathbf{7 b}$ and $\mathbf{1 4 b}$ are given in runs 17 and 18 of Table 1. The following procedure is for run 18 , and that for run 17 was analogous. A solution of $66.5 \mathrm{mg}(0.173 \mathrm{mmol})$ of $\mathbf{7 b}, 152 \mathrm{mg}$ $(0.428 \mathrm{mmol})$ of $\mathbf{1 4 b}$, and $3.14 \mathrm{mg}(0.0189 \mathrm{mmol})$ of 4-tertbutylcatechol in 1.5 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ was stirred at $85^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was rotary evaporated to leave a heavy oil, which was analyzed by analytical HPLC (eluant $=0.020 \mathrm{M}$ ammonium trifluroacetate in MeCN ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times $=$ 6.0 min for $\mathbf{1 9 b}$ and 7.7 min for $\mathbf{1 8 b}$) and then chromatographed (MPLC) on silica gel with hexanes $-\mathrm{EtOAc}-\mathrm{Et}_{3} \mathrm{~N}$ (100:0:0 to 60:20: 20) as eluant to give $46 \mathrm{mg}(36 \%)$ of trans-1-[6-(N, N-dimethylamino)-hexylthio]-2-(dimethyloctylsilyl)-4-[6-(N,N-dimethylamino)hexoxycar-bonyl]-5-(octoxycarbonyl)-1-cyclohexene (19b) as a heavy oil, followed by 43 mg (34%) of trans-1-[6-(N, N-dimethylamino)hexylthio]-2-(dimethyloctylsilyl)-4-(octoxycarbonyl)-5-[2-(N, N-dimethylamino)hex-oxycarbonyl]-1-cyclohexene (18b) as a heavy oil. For 18b: ${ }^{1} \mathrm{H}$ NMR $\delta 4.02-4.14\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 2.83-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.79(\mathrm{~m}$ containing s at $2.25,23 \mathrm{H}$ total including $\left.2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2}\right), 1.41-1.69$
(m, $\left.10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.27\left(\mathrm{~m}, 30 \mathrm{H}, 2\left(\mathrm{CH}_{2}\right)_{2}\right.$, $\left.\left(\mathrm{CH}_{2}\right)_{5},\left(\mathrm{CH}_{2}\right)_{6}\right), 0.89\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.16(\mathrm{~s}$, $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.06$, $174.56,139.35,138.30,65.06,65.04,59.98,59.96,45.69,42.42,41.94$, $34.47,34.19,33.92,32.17,32.14,32.01,30.00,29.92,29.59,29.55$, $29.43,29.27,28.81,28.78,27.82,27.33,26.09,26.06,24.27,22.91$, $22.86,16.49,14.35,14.31,-1.35,-1.43$. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{42} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M}+\mathrm{H}) 739.5843$, found 739.5834. For 19b: ${ }^{1} \mathrm{H}$ NMR $\delta 4.02-4.14\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 2.83-$ $2.92(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.79(\mathrm{~m}$ containing s at $2.25,23 \mathrm{H}$ total including $\left.2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2}\right), 1.41-1.68\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 1.28\left(\mathrm{~m}, 30 \mathrm{H}, 2\left(\mathrm{CH}_{2}\right)_{2},\left(\mathrm{CH}_{2}\right)_{5},\left(\mathrm{CH}_{2}\right)_{6}\right), 0.89\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $0.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}-\right.$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.07,174.54,139.38,138.23,65.14,64.95$, 59.97, 45.68, 42.42, 41.92, 34.43, 34.19, 33.92, 32.17, 32.12, 32.01, $30.02,29.92,29.58,29.55,29.43,29.27,28.80,27.83,27.33,26.08$, $24.27,22.90,22.86,16.49,14.35,14.31,-1.34,-1.43$. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{42} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M}+\mathrm{H})$ 739.5843, found 739.5837.
trans-1-[(2-Trimethylammonio)ethylthio]-2-(dimethyldodecylsily) -4 -(dodecoxycarbonyl)-5-[(2-trimethylammonio)ethoxycarbonyl]-1-cyclohexene Diiodide (15a). A mixture of $38.3 \mathrm{mg}(0.0518 \mathrm{mmol})$ of 18a, $72.5 \mathrm{mg}(0.511 \mathrm{mmol})$ of MeI, and 2.0 mL of MeCN was stirred at 25 ${ }^{\circ} \mathrm{C}$ under N_{2} overnight and then rotary evaporated to leave 52.3 mg (99%) of $\mathbf{1 5 a}$ as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\delta 4.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.70$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.57\left(\mathrm{~s}, 18 \mathrm{H}, 2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.23$ $(\mathrm{m}, 1 \mathrm{H}), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.26\left(\mathrm{~m}, 38 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{9},\left(\mathrm{CH}_{2}\right)_{10}\right)$, $0.89\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.19\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right)$, $0.18\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.78,173.52,141.38$, $136.34,66.43,65.25,65.12,58.47,54.96,54.25,41.72,41.37,34.78$, $34.07,33.91,32.04,29.90,29.81,29.77,29.61,29.49,29.43,28.72$, $26.03,25.04,24.14,22.81,16.45,14.26,-1.31,-1.43$. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{44} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSiI}$ (monocation•I-) 895.5280, found 895.5257.
trans-1-[(2-Trimethylammonio)ethylthio]-2-(dimethyldodecyl-silyl)-4-[(2-trimethylammonio)ethoxycarbonyl]-5-(dodecoxycarbonyl)-1-cyclohexene Diiodide (16a). From 19a, the same procedure as for $\mathbf{1 5 a}$ gave (98%) 16a as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\delta 4.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}{ }^{-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{~N}\right), 3.98-4.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{N}\right.$), $3.51-3.63$ (2 s at 3.55 and 3.59, overlapping with $\left.\mathrm{m}, 19 \mathrm{H}, 2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{SCH}_{2} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{N}\right), 3.10-$ $3.36(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H})$, $1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.26\left(\mathrm{~m}, 38 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{9},\left(\mathrm{CH}_{2}\right)_{10}\right), 0.88(\mathrm{t}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.19\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR δ $174.37,173.80,143.32,134.85,66.44,65.81,65.46,58.09,55.31,54.09$, $41.59,40.80,33.98,33.58,33.38,32.15,29.98,29.95,29.91,29.82$, $29.67,29.59,28.80,26.16,24.16,24.03,22.92,16.71,14.37,-1.10$, -1.17. FAB HRMS (3-nitrobenzyl alcohol matrix) calcd for $\mathrm{C}_{44} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{-}$ SSiI (monocation $\cdot \mathrm{I}^{-}$) 895.5280, found 895.5286.
trans-1-[(6-Trimethylammonio)hexylthio]-2-(dimethyloctylsilyl)-4-(octoxycarbonyl)-5-[(6-trimethylammonio)hexoxycarbonyl]-1-cyclohexene Diiodide (15b). A mixture of $15.0 \mathrm{mg}(0.0203 \mathrm{mmol})$ of $\mathbf{1 8 b}, 17.7 \mathrm{mg}(0.125 \mathrm{mmol})$ of MeI , and 0.80 mL of MeCN was stirred at $25^{\circ} \mathrm{C}$ under N_{2} overnight. The residue after rotary evaporation was purified by TLC ($0.25-\mathrm{mm}$ aluminum oxide; EM 5731-3) with 60:38:2 $\mathrm{MeCN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as eluant to give $12.3 \mathrm{mg}(59 \%)$ of $\mathbf{1 5 b}$ as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\delta 4.00-4.24\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 3.69-$ $3.80\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}\right), 3.46\left(\mathrm{~s}, 18 \mathrm{H}, 2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 2.87-2.94(\mathrm{~m}, 1 \mathrm{H})$, 2.18-2.79 (m, 7H), 1.76-1.89 (m, 4H, $2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.20-1.72 (m, $\left.36 \mathrm{H}, 2\left(\mathrm{CH}_{2}\right)_{3},\left(\mathrm{CH}_{2}\right)_{6}\right), 0.89\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right)$, $0.17\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.09,174.52,139.23,138.40,66.90,65.09,64.61,54.00,42.22$, $41.74,34.28,33.94,33.88,32.14,31.97,31.88,29.93,29.54,29.50$, $29.39,28.76,28.70,28.40,26.05,25.69,25.42,24.21,23.26,23.13$, $22.87,22.83,14.35,14.30,-1.39,-1.45$. FAB HRMS (3-nitrobenzyl alcohol-glycerol-trifluoroacetic acid matrix) calcd for $\mathrm{C}_{44} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSiI}$ (monocation $\cdot I^{-}$) 895.5280, found 895.5255.
trans-1-[(6-Trimethylammonio)hexylthio]-2-(dimethyloctylsilyl)-4-[(6-trimethylammonio)hexoxycarbonyl]-5-(octoxycarbonyl)-1-cy-
clohexene Diiodide (16b). From 19b, the same procedure as for $\mathbf{1 5 b}$ gave (52%) 16b as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\delta 4.14-4.25$ (m, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 3.99-4.09\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}, \mathrm{CH}_{2} \mathrm{O}\right), 3.71-3.80(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.63-3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.49\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 3.47$ $\left(\mathrm{s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right), 2.89-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.82(1 \mathrm{H}), 2.28-2.66(\mathrm{~m}$, $6 \mathrm{H}), 1.75-1.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.20-1.70\left(\mathrm{~m}, 36 \mathrm{H}, 2\left(\mathrm{CH}_{2}\right)_{3}\right.$, $\left.\left(\mathrm{CH}_{2}\right)_{6}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right)$, $0.19\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.18\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{\mathrm{a}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.71,174.68,139.06,138.49,66.94,65.39,64.55,53.95,53.93$, $42.35,41.84,33.99,33.88,33.53,32.14,31.97,31.36,29.98,29.53$, $29.50,29.42,29.37,28.74,28.36,26.09,25.76,25.58,25.46,24.18$, $23.31,23.00,22.87,22.84,14.36,14.33,-1.33,-1.44$. FAB HRMS (3-nitrobenzyl alcohol-glycerol-trifluoroacetic acid matrix) calcd for $\mathrm{C}_{44} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSiI}$ (monocation $\cdot \mathrm{I}^{-}$) 895.5280, found 895.5277.
${ }^{\mathbf{1}} \mathbf{H},{ }^{\mathbf{1}} \mathbf{H}$ ROESY NMR Spectroscopy. Experiments were performed on a 400 MHz Bruker Avance DRX-400 instrument at $18^{\circ} \mathrm{C}$ with degassed $\left(\mathrm{N}_{2}\right) \mathrm{CD}_{3} \mathrm{OD}$ and CDCl_{3} solutions of $\mathbf{1 5 a}$ and 16a. In the ROESY pulse sequence the relaxation delay was 2.000 s , and the spinlock duration was 250.000 ms .

Monolayer Study. A Langmuir trough with a computer-controlled ribbon barrier (Labcon, Darlington, UK) was used. ${ }^{29}$ The freshly cleaned trough was filled with a pH 8.0 buffer (10 mM Tris, 1.0 M NaCl),

[^9]chosen to maximize the insolubility of the monomolecular films. After equilibration of the subphase for 30 min at $23^{\circ} \mathrm{C}$, a CHCl_{3} solution of 15a or 16a was deposited at the air/buffer interface to an initial area of 125 or $95 \AA^{2} /$ molecule, respectively. Following a $15-\mathrm{min}$ interval for solvent evaporation, the monolayers were compressed at $3 \AA^{2} /$ molecule/ min. Monolayers for which compression was stopped between lift-off and collapse maintained constant surface pressures within $2.5 \mathrm{mN} / \mathrm{m}$ for 15 min , confirming their insolubility. Other details of the monolayer protocol have been described previously. ${ }^{29}$ The results are given in Figure 3.

Acknowledgment. D.A.J. and S.B.H. thank the National Science Foundation (CHE-9526188) and the National Institutes of Health (HL 60914 and 03502), respectively, for the support of this research.

Supporting Information Available: ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100.6 MHz) spectra of $\mathbf{1 , 2 a}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 4 - 1 6}, \mathbf{1 8}$, and 19; ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of 9 and $\mathbf{1 2} ;{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY NMR (440 MHz) and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ ROESY NMR (400 MHz) spectra of $\mathbf{1 5 a}$ and 16a in $\mathrm{CD}_{3} \mathrm{OD}$ and CDCl_{3}. This information is available free of charge via the Internet at http://pubs.acs.org.

JA9940571

[^0]: * To whom correspondence should be addressed. Telephone: 307-7664335. FAX: 307-766-2807. e-mail: DAJ@uwyo.edu.
 (1) For reviews, see (a) Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63. (b) Sauer, J.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 779. (c) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10.
 (2) For examples, see (a) Engberts, J. B. F. N. Pure Appl. Chem. 1995, 67, 823. (b) Garner, P. P. In Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic and Professional: London, 1998; p 1. (c) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. (d) Meijer, A.; Otto, S.; Engberts, J. B. F. N. J. Org. Chem. 1998, 63, 8994. (e) Breslow, R.; Rideout, D. C. J. Am. Chem. Soc. 1980, 102, 7816. (f) Braun, R.; Schuster, F.; Sauer, J. Tetrahedron Lett. 1986, 27, 1285. (g) Diego-Castro, M. J.; Hailes, H. C. Tetrahedron Lett. 1998, 39, 2211, and references therein.
 (3) (a) Otto, S.; Engberts, J. B. F. N.; Kwak, J. C. T. J. Am. Chem. Soc. 1998, 120, 9517. (b) Otto, S.; Boccaletti, G.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1998, 120, 4238.

[^1]: (4) Jaeger, D. A.; Shinozaki, H.; Goodson, P. A. J. Org. Chem. 1991, 56, 2482.
 (5) (a) Jaeger, D. A.; Wang, J. J. Org. Chem. 1993, 58, 6745. (b) Jaeger, D. A.; Wang, J. Tetrahedron Lett. 1992, 33, 6515. (c) Jaeger, D. A.; Wang, J.; Goodson, P. A. J. Crystallogr. Spectrosc. Res. 1993, 23, 955.
 (6) (a) Casetta, M.; Colonna, S.; Manfredi, A. Gazz. Chim. Ital. 1989, 119, 533. (b) Colonna, S.; Manfredi, A.; Annunziata, R. Tetrahedron Lett. 1988, 29, 3347.
 (7) Some of these results have been communicated: (a) Jaeger, D. A.; Su, D. Tetrahedron Lett. 1999, 40, 257. (b) Su, D.; Jaeger, D. A. Tetrahedron Lett. 1999, 40, 7871.
 (8) Reich, H. J.; Reich, I. E.; Yelm, K. E.; Holladay, J. E.; Gschneidner, D. J. Am. Chem. Soc. 1993, 115, 6625.

[^2]: (9) (a) Menger, F. M.; Dulany, M. A.; Carnahan, D. W.; Lee, L. H. J. Am. Chem. Soc. 1987, 109, 6899. (b) Menger, F. M.; Doll, D. W. J. Am. Chem. Soc. 1984, 106, 1109, and references therein.
 (10) Bunton, C. A.; Bacaloglu, R. J. Colloid Interface Sci. 1987, 115, 288.
 (11) Suzuki, S.; Green, P. G.; Bumgarner, R. E.; Dasgupta, S.; Goddard, W. A., III.; Blake, G. A. Science 1992, 257, 942.
 (12) For a discussion of Hammett σ values for $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}^{+} \mathrm{Me}_{3}(n=0-3)$, $\mathrm{Me}, \mathrm{CO}_{2} \mathrm{R}$, and NMe_{2}, see ref 7 b .

[^3]: (13) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
 (14) Kahn, S. D.; Pau, C. F.; Overman, L. E.; Hehre, W. J. J. Am. Chem. Soc. 1986, 108, 7381.
 (15) For examples, see (a) Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller, W. G. J. Phys. Chem. 1992, 96, 474. (b) Shinkata, T.; Imai, S.; Morishima, Y. Langmuir 1997, 13, 5229. (c) Anet, F. A. L. J. Am. Chem. Soc. 1996, 108, 7102.

[^4]: (16) For examples, see: Bacaloglu, R.; Bunton, C. A.; Cerichelli, G.; Ortega, F. J. Phys. Chem. 1989, 93, 1490, and references therein.

[^5]: (17) (a) Sauer, J. Angew. Chem., Int. Ed. Engl. 1967, 6, 16. (b) Telan, L. A.; Firestone, R. A. Tetrahedron 1999, 55, 14269.
 (18) Anet, F. A. L.; Freedberg, D. I.; Storer, J. W.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 10969.

[^6]: (19) See Figures 5a and 6 of ref 5a for analogous conformations of closely related cycloadducts 22 and 23.
 (20) Gaines, G. L., Jr. Insoluble Monolayers at Liquid-Gas Interfaces; Interscience: New York, 1966; pp 136-139.

[^7]: (23) Andrews, K. J. M.; Bergel, F.; Morrison, A. L. J. Chem. Soc. 1953, 2998.
 (24) Smith, R. F.; Coffman, K. J. Synth. Commun. 1982, 12, 801.
 (25) Watanabe, T.; Matsuo, M.; Taniguchi, K.; Ueda, I. Chem. Pharm. Bull. 1982, 30, 1473.
 (26) Monteil, F.; Queau, R.; Kalck, P. J. Organomet. Chem. 1994, 480, 177.
 (27) Ramadas, K.; Srinivasan, N. Synth. Commun. 1995, 25, 227.

[^8]: (28) (a) Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 19, 4475. (b) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 522.

[^9]: (29) Discher, B. D.; Maloney, K. M.; Grainger, D. W.; Sousa, C. A.; Hall, S. B. Biochemistry 1999, 38, 374.

